Нейронауки в Science и Nature. Выпуск 77. Скажи мне где твой друг, и я скажу, где ты

Нейробиологи из RIKEN (Япония) показали новые возможности механизмов пространственной ориентации — активность «системы GPS» крыс способна показать не только положение самой особи в пространстве, но и перемещения крыс, находящихся рядом. Результаты исследований опубликовали 11 января в журнале Science.

Исследователи описали четыре предполагаемые модели совместного картирования пространства в гиппокампе.

Credits: RIKEN


Для социальных животных очень важно осознавать свое положение в пространстве относительно других членов группы, и теперь стало больше известно о том, как именно мозг реализует эту задачу. Ответ на очередную загадку мозга дает новая работа исследователей из японского RIKEN Brain Science Institute: информация о соседях у крыс фиксируется в той же группе клеток мозга, в которой отмечается положение самой особи.

Ведущую роль в пространственной ориентации выполняет особая структура мозга – гиппокамп, точнее, его передняя часть. О ее значении в «картировании» уже было известно ранее — в 2014 году самые значимые исследования были отмечены Нобелевской премией по физиологии или медицине. Но использует ли мозг нейроны гиппокампа, чтобы наблюдать не только за обстановкой, но и за другими особями, оставалось под вопросом. Для проверки гипотезы исследователи поместили двух крыс в простой Т-образный лабиринт. Одной из них дали возможность наблюдать за другой перед тем, как самой выполнить задание, и записали активность ее гиппокампальных нейронов. В результате, активность мозга «наблюдателя» дала четкое представление не только о его собственных перемещениях, но о действиях «бегуна».

В ходе эксперимента «наблюдатель» должен был выполнить два типа заданий: пройти в тот же рукав лабиринта, в который ушел «бегун», и пройти в противоположный. Оказалось, что доля нейронов, обрабатывающих и учитывающих информацию о другом объекте, может составлять до трех четвертей от общего количества клеток «системы GPS».

Потоки информации о самом себе и о соседе не смешиваются, так как важно не только, какая именно клетка проявляет активность, но и в какой момент времени: нейроны гиппокампа активируются с частотой около 8-ми Гц (так называемый тета-ритм), и понять, где информация о «бегуне», а где — о самом «наблюдателе» можно за счет фазового сдвига между волнами активности клеток. А пересечение путей регистрируется отдельными нейронами только когда «наблюдатель» оказывается в месте, в котором ранее уже был «бегун» (например, перед развилкой, где крыса задерживается чуть дольше для принятия решения).

Количество нейронов, вовлеченных в процесс наблюдения за «бегуном», зависит от важности положения «бегуна» для «наблюдателя» в данный момент. Так, когда крысам нужно было оказаться в одном рукаве лабиринта, почти все активные нейроны «системы GPS» были вовлечены в отслеживание соседа; и только около 13% — в случае необходимости выбрать другой рукав.

«У нейронов не возникает путаницы, — комментирует Сигэёоси Фуджисава, заведующий лабораторией RIKEN BSI, — Активность клеток “наблюдателя” позволяет с высокой точностью реконструировать перемещения обеих крыс, и даже сказать, что кто-то из них находится сейчас в месте, в котором когда-то побывали они обе».

Фуджисава и его коллеги предполагают, что, гиппокамп способен формировать четыре типа пространственных моделей: модель самой особи, модель наблюдаемой особи, модель взаиморасположения особей в пространстве в одно и то же время, и отметки о посещении разными особями одних и тех же точек пространства в разное время.

Полученные выводы расширяют существующую теорию когнитивных карт и дополняют представление о роли гиппокампа в когнитивных процессах.


Текст: Виктория Стельмах

“Spatial representations of self and other in the hippocampus” by Teruko Danjo, Taro Toyoizumi, and Shigeyoshi Fujisawa in Science.Published online January 12 2018 doi:10.1126/science.aao3898

Читайте материалы нашего сайта в FacebookВКонтакте и канале в Telegram, а также следите за новыми картинками дня в Instagram.